Object Counting Using a Refinement Network
نویسندگان
چکیده
To address the scale variance and uneven distribution of objects in scenarios object-counting tasks, an algorithm called Refinement Network (RefNet) is exploited. The proposed top-down scheme sequentially aggregates multiscale features, which are laterally connected with low-level information. Trained by a multiresolution density regression loss, set intermediate-density maps estimated on each feature pyramid, detailed information map gradually added through coarse-to-fine granular refinement progress to predict final map. We evaluate our RefNet three crowd-counting benchmark datasets, namely, ShanghaiTech, UCF_CC_50, UCSD, method achieves competitive performances mean absolute error root squared compared state-of-the-art approaches. further extend cell counting, illustrating its effectiveness relative counting tasks.
منابع مشابه
Salient Object Detection using a Context-Aware Refinement Network
Recently there has been remarkable success in pushing the state of the art in salient object detection. Most of the improvements are driven by employing end-to-end deeper feed-forward networks. However, in many cases precisely detecting salient regions requires representation of fine details. Combining high-level and low-level features using skip connections is a strategy that has been proposed...
متن کاملRefinement of Object-Z Specifications Using Morgan-s Refinement Calculus
Morgan’s refinement calculus (MRC) is one of the well-known methods allowing the formality presented in the program specification to be continued all the way to code. On the other hand, Object-Z (OZ) is an extension of Z adding support for classes and objects. There are a number of methods for obtaining code from OZ specifications that can be categorized into refinement and animation methods. A...
متن کاملRefinement of Object-Z Specifications Using Morgan-s Refinement Calculus
Morgan’s refinement calculus (MRC) is one of the well-known methods allowing the formality presented in the program specification to be continued all the way to code. On the other hand, Object-Z (OZ) is an extension of Z adding support for classes and objects. There are a number of methods for obtaining code from OZ specifications that can be categorized into refinement and animation methods. A...
متن کاملSingle-Shot Refinement Neural Network for Object Detection
For object detection, the two-stage approach (e.g., Faster R-CNN) has been achieving the highest accuracy, whereas the one-stage approach (e.g., SSD) has the advantage of high efficiency. To inherit the merits of both while overcoming their disadvantages, in this paper, we propose a novel single-shot based detector, called RefineDet, that achieves better accuracy than two-stage methods and main...
متن کاملInteractive Object Counting
Our objective is to count (and localize) object instances in an image interactively. We target the regime where individual object detectors do not work reliably due to crowding, or overlap, or size of the instances, and take the approach of estimating an object density. Our main contribution is an interactive counting system, along with solutions for its main components. Thus, we develop a feat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tsinghua Science & Technology
سال: 2022
ISSN: ['1878-7606', '1007-0214']
DOI: https://doi.org/10.26599/tst.2021.9010097